
The Network Access Plugin (v1.71)
The network interface opens custom access to data that is internally used by Turbo-
BrainVoyager (TBV) during and after real-time processing including information of ROI,
design matrix, (pre-processed) raw data and statistical information inclusive the content of the
design matrix, beta maps and contrast t-maps. This plugin allows to perform additional
operations and calculations outside the TBV.

Well defined access queries are used to get access to the data via a TCP connection.
Therefore a server implementation allows to get access to the whole data that is also
provided by the plugin interface during and after the real-time processing.

A server client approach is used to get access to the data at any time. Therefore the server
provides all features to get access to the data in real-time while running the analysis.

Send a data specific query to get the requested information from the server.

Connect to the server
A connection to the server could be established through a TCP socket implementation. At first
the specific server port has to be defined in the plugin. After that the IP of the server will be
displayed in the plugin window. The ports range from 1 to 65535 but the first 1024 well-known
ports or system ports are used by system processes and need super user privileges on Unix-
like systems to bind a network socket to it. Be sure to use a TCP socket to connect the server.

The plugin uses two different sockets. One to receive and answer the queries from the client
and one to send execution information from the TBV. To specify the socket to use send a
("Request Socket") char array for the query socket or a ("Execute Socket") char array for the
execution information socket (prepend the size of the array as a 4 byte unsigned integer for
all char arrays and end the array with a NUL [\0]). Include the specific char array into a byte
array and insert as the first element the size of the byte array as an 8 byte signed 64bit
integer. An example byte based representation is shown below:

If the request is wrong the connection will be closed. Insert a short delay from around 0.5
seconds between the different socket connection requests to be ensure that the server is
listening for a new connection.

After the connection is completely established the data can be directly accessed from TBV.
Only ask for data that is already available in TBV, otherwise an error message will be
returned!

All data that is send and received is in big-endian (network byte) byte order and all floating
point values are in single-precision floating-point format.

0 0 0 0 0 0 0 \19 0 0 0 \15 R e q u e s t S o c k e t \0

0 0 0 0 0 0 0 \19 0 0 0 \15 E x e c u t e S o c k e t \0

Access the data
A query with the included request of the specific data must be send to the server to access
the data from the TBV. Every query is defined on the next pages of this guide.

A query has to be constructed as a byte array where the first element is a definition of the size
of the byte array as an 8 byte signed 64bit integer.

The second entry defines the type of query as a char array. After that follows the specific
query definitions, for example the time point from which to get the data. Only ask for data that
are already available in the TBV otherwise an error string ("Wrong request!") will be returned.

If the query consists of more than one parameter, attach the other parameters to the query
and store it in the byte array.

You will receive a byte array with the respective content as answer. (The first 8 byte of the
byte array represents the size of the received byte array as unsigned 64bit integer.) As an
example how a definition of the byte array should look like, see the “tGetCurrentTimePoint”
example below (send and receive).

Prestep, Poststep, Postrun calls
Whenever new data is available a specific information will be send to the client. The calls are
distinguished into a Prestep, Poststep and a Postrun call. The Prestep call will be send
whenever new raw data is available. The Poststep call will be send whenever new pre-
processed data is available. The Postrun call will be send when the experiment is completely
finished or interrupted by the user. This invocation consists of an at least 14 byte large char
array followed by an integer representing the current point in time of the current TBV
processing. Both data will be send as a byte array (The first 8 byte of the byte array
represents the size of the received byte array as signed 64bit integer)

Wrong requests
Whenever the user sends a wrong query (for example asked for a time point that has not
been processed yet) a wrong request information will be send to the client. The first part of
the information is the definition that a wrong request was asked. After that follows the
description which specific part of the query is wrong. The client receives a 14 byte char array
(“Wrong request!”) followed by an char array including the respective error. Keep in mind that
this data will also be send in a byte array. (The first 8 byte of the byte array represents the
size of the received byte array as unsigned 64bit integer and before each char array the
specific length as a 4byte unsigned integer.)

0 0 0 0 0 0 0 \18 0 0 0 \14 W r o n g r e q u e s t \0

0 0 0 0 0 0 0 \25 0 0 0 \21 t G e t C u r r e n t T i m e P o i n t \0

0 0 0 0 0 0 0 \29 0 0 0 \21 t G e t C u r r e n t T i m e P o i n t \0 0 0 0 \1

0 0 0 0 0 0 0 \39 0 0 0 \15 W r o n g r e q u e s t ! \0

0 0 0 \16 N o R O I s e l e c t e d \0

Basic Project Queries
Send: tGetCurrentTimePoint
Receive: int CurrentTimePoint
Provides the number of the currently processed step during real-time processing as an
integer. Note that this function is 1-based, i.e. when the first step is processed the function
returns "1" not "0"; this is important when the return value is used to access time-related
information; in this case subtract "1" from the returned value.

Send: tGetExpectedNrOfTimePoints
Receive: int NrOfTimePoints
Provides the number of time points as an integer. The name contains the term "expected"
since a real-time run might be interrupted by the user, i.e. this is the intended number of
volumes as specified in the TBV settings file.

Send: tGetDimsOfFunctionalData
Receive: int dim_x, int dim_y, int dim_z
Provides the dimensions of the functional volumes; "dim_x" and "dim_y" are the dimensions
of the slices constituting the volume and "dim_z" corresponds to the number of slices.
Example of a Bytearray answer:

Send: tGetProjectName
Receive: char[100] cProjectName
Provides the name of the project as specified in the TBV file as a C string; note that the
received data must point to a pre-allocated array that is large enough (a buffer of 100 bytes
should be sufficient). The returned name can, for example, be used as part of names
identifying exported data (see example "Export Volume Data" client).

Send: tGetWatchFolder
Receive: char[513] cWatchFolder
Provides the path of the "watch folder" as specified in the TBV file as a C string; Note that the
received data must point to a pre-allocated array that is large enough for the returned path (a
buffer of 513 bytes is recommended).

Send: tGetTargetFolder
Receive: char[513] cTargetFolder
Provides the path of the "target folder" as specified in the TBV file as a C string; note that the
received data must point to a pre-allocated array that is large enough for the returned path (a
buffer of 513 bytes is recommended). The target folder can be used to export data for custom
processing (see example "Export Volume Data" client).

Send: tGetFeedbackFolder
Receive: char[513] cFeedbackFolder
Provides the path of the "feedback folder" as specified in the TBV file as a C string; note that
the provided data must point to a pre-allocated array that is large enough for the received
path (a buffer of 513 bytes is recommended). The feedback folder can be used to store the
result of custom calculations, e.g. providing custom input for the "Presenter" software tool.

0 0 0 0 0 0 0 \41 0 0 0 \25 t G e t D i m s O f F u n c t i o n a l D a t a \0

0 0 0 \64 0 0 0 \64 0 0 0 \32

Protocol, DM, GLM Queries

Send: tGetCurrentProtocolCondition
Receive: int CurrentProtocolCondition
Provides the index of the currently "active" condition of the protocol (0-based), i.e. the
condition that has a defined interval enclosing the current time point.

Send: tGetFullNrOfPredictors
Receive: int FullNrOfPredictors
Provides the number of predictors of the design matrix. Note that this query returns the "full"
number of intended predictors while the "tGetCurrentNrOfPredictors" returns the number of
predictors currently in use.

Send: tGetCurrentNrOfPredictors
Receive: int CurrentNrOfPredictors
Provides the currently effective number of predictors. Note that this query may return a
smaller number than the "tGetFullNrOfPredictors" query since the internal GLM calculations
use a restricted set of predictors in case that for one or more predictors not enough non-zero
data points are available. Roughly speaking, the number of current predictors increases each
time when a new condition is encountered during real-time processing.

Send: tGetNrOfConfoundPredictors
Receive: int NrOfConfoundPredictors
Provides the full number of confound predictors. To get the full/effective number of predictors-
of-interest, subtract the returned value from the "tGetFullNrOfPredictors" or
"tGetCurrentNrOfPredictors" function, respectively.

Send: tGetValueOfDesignMatrix, int pred, int timepoint
Receive: int pred, int timepoint, float ValueOfDesignMatrix
Provides the value of a predictor at a given time point of the current design matrix. Note that
the design matrix always contains the "full" set of predictors, a reduced set of predictors is
only used internally (predictors that are not used internally are those containing only "0.0"
entries up to the current time point). Note that the "timepoint" parameter must be smaller than
the value returned by the "tGetCurrentTimePoint" query. For details, see the provided
example clients.

Send: tGetNrOfContrasts
Receive: int NrOfContrasts
Provides the number of (automatically or manually) specified contrasts in the TBV settings
file. This value is important for accessing t maps, see the "tGetMapValueOfVoxel" and
"tGetContrastMaps" queries.

ROI Queries

Send: tGetNrOfROIs
Receive: int NrOfROIs
Provides the number of currently available ROIs. Note that the number of ROIs may change
during real-time processing since the user may open additional ROI windows or close ROI
windows at any time. It is thus important to use this function prior to other functions accessing
ROI information.

Send: tGetMeanOfROI, int roi
Receive: int roi, float MeanOfROI
Returns the mean signal value of the ROI referenced with the "roi" parameter (0-based
index). A valid number must be smaller than the value returned by the "tGetNrOfROIs" query.
Note that the voxels defining a ROI might change in case that the user selects another region
for the same ROI index (replaces the content of the same plot in the GUI). The query should
be used in situations when ROIs are not changed, i.e. when a set of ROIs is pre-loaded for a
neurofeedback study. For details, see the "ROI Processing" example client.

Send: tGetExistingMeansOfROI, int roi, int toTimePoint
Receive: int roi, int toTimePoint, float [toTimePoint] ExistingMeansOfROI
Returns all mean signal values of the ROI referenced with the "roi" parameter (0-based index)
to the specified point in time. A valid ROI number must be smaller than the value returned by
the "tGetNrOfROIs" query. Note that the voxels defining a ROI might change in case that the
user selects another region for the same ROI index (replaces the content of the same plot in
the GUI). The query should be used in situations when ROIs are not changed, i.e. when a set
of ROIs is pre-loaded for a neurofeedback study. For details, see the "ROI Processing"
example client.

Send: tGetMeanOfROIAtTimePoint, int roi, int toTimePoint
Receive: int roi, int toTimePoint, float MeanOfROIAtTimePoint
Returns the mean signal value of the ROI referenced with the "roi" parameter (0-based index)
of a defined point in time. A valid ROI number must be smaller than the value returned by the
"tGetNrOfROIs" query, a valid toTimePoint number must be smaller than the value returned
by the "tGetCurrentTimePoint" query. Note that the voxels defining a ROI might change in
case that the user selects another region for the same ROI index (replaces the content of the
same plot in the GUI). The query should be used in situations when ROIs are not changed,
i.e. when a set of ROIs is pre-loaded for a neurofeedback study. For details, see the "ROI
Processing" example client.

Send: tGetNrOfVoxelsOfROI, int roi
Receive: int roi, int NrOfVoxelsOfROI
Provides the number of voxels of the specified ROI. Note that the returned number might
change during real-time processing in case that the user replaces a ROI with another set of
voxels. The value of this query is important for accessing information of individual ROI voxels
(see below).

Send: tGetBetaOfROI, int roi, int beta
Receive: int roi, int beta, float BetaOfROI
Retrieves the value of a specified beta (0-based index) of the specified ROI (0-based index).
For each ROI a GLM is calculated incrementally using the mean signal time course; the betas
of the calculated GLM are accessible with this query; note that the beta indices range from 0
to the full number of predictors; to retrieve only the betas of the predictors of interest, the beta
index must be smaller than "tGetFullNrOfPredictors" minus "tGetNrOfConfoundPredictors".
For details, see the "ROI Processing" example client.

Send: tGetCoordsOfVoxelOfROI, int roi, int voxel
Receive: int roi, int voxel, int x, int y, int z
Provides the coordinates of a voxel (0-based enumeration index) of the ROI specified with the
"roi" parameter (0-based index); the value for the "voxel" index ranges from "0" to one less
than the value returned by the "tGetNrOfVoxelsOfROI" query; since ROIs content may
change, use the latter function for a specific ROI index always before using the current
function. For details, see the "ROI Processing" example client.

Send: tGetAllCoordsOfVoxelsOfROI, int roi
Receive: int roi, int [tGetNrOfVoxelsOfROI(roi)*3] CoordsOfVoxelsOfROI
Provides the coordinates of all voxels of the ROI specified with the "roi" parameter (0-based
index); since ROIs content may change, use the latter function for a specific ROI index always
before using the current function. For details, see the "ROI Processing" example plugin. If a
coordinate of a specific voxel of a roi needs to be accessed, use the term "x_coord =
voxel_roi+0; y_coord = voxel_roi+1; z_coord = voxel_roi+2". For details, see the "ROI
Processing" example client.

Volume Data Access Queries

Send: tGetValueOfVoxelAtTime, int x, int y, int z, int timePoint
Receive: int x, int y, int z, int timepoint, float ValueOfVoxelAtTime
Provides the signal value as a 4-byte float value of the voxel specified by the coordinate
parameters "x", "y" and "z" for the given time point (0-based indices). The given "timepoint"
parameter must be smaller than the value obtained by the "tGetCurrentTimePoint" query.

Send: tGetValueOfAllVoxelsAtTime, int timePoint
Receive: short int [dim_x*dim_y*dim_z] TimeCourseData
Provides the signal value of all voxels to a given time point that is also used internally in TBV.
Individual values are 2-byte short integers. Note that the "timepoint" parameter must be
smaller than the value returned by the "tGetCurrentTimePoint()" function. If a voxel with
specific coordinates needs to be accessed, use the term "z_coord*dim_x*dim_y +
y_coord*dim_x + x_coord". For details, see the provided example clients.

Send: tGetRawValueOfAllVoxelsAtTime, int timePoint
Receive: short int [dim_x*dim_y*dim_z] TimeCourseData
Provides raw (not pre-processed) the signal value of all voxels to a given time point that is
also used internally in TBV. Individual values are 2-byte short integers. Note that the
"timepoint" parameter must be smaller than the value returned by the
"tGetCurrentTimePoint()" function. If a voxel with specific coordinates needs to be accessed,
use the term "z_coord*dim_x*dim_y + y_coord*dim_x + x_coord". For details, see the
provided example clients.

Send: tGetBetaOfVoxel, int beta, int x, int y, int z
Receive: int beta, int x, int y, int z, float BetaOfVoxel
Provides the value of a beta indexed by the "beta" parameter as an 4-byte float value for the
voxel specified by the coordinate parameters "x", "y" and "z" (0-based indices). This function
allows to access estimated beta values resulting from the incremental GLM performed by
TBV. Note that the beta index ranges from 0 to the current number of predictors; to retrieve
only the betas of the predictors of interest, the beta index must be smaller than
"tGetCurrentNrOfPredictors" minus "tGetNrOfConfoundPredictors". For details, see the
"Export Volume Data" example client.

Send: tGetBetaMaps
Receive: float [CurrentNrOfPredictors*dim_x*dim_y*dim_z] BetaMaps
Provides the full stack of beta maps that is also used internally in TBV. Individual entries are
4-byte float values. The data is organized as a flat array; in order to obtain the beta value of a
specific predictor index for a voxel with specific coordinates, use the term "beta_i*dim_xyz +
z_coord*dim_xy + y_coord*dim_x + x_coord". Note that the beta_i index must be in the
ranges from 0 to the current number of predictors; to retrieve only the betas of the predictors
of interest, the beta index must be smaller than tGetCurrentNrOfPredictors" minus
"tGetNrOfConfoundPredictors". For details, see the provided "Export Volume Data" client.

Send: tGetMapValueOfVoxel, int map, int x, int y, int z
Receive: int map, int x, int y, int z, float MapValueOfVoxel
Provides the value of a t map indexed by the "map" parameter as a 4-byte float value for the
voxel specified by the coordinate parameters "x", "y" and "z" (0-based indices). This function
allows to access calculated contrast values that are calculated based on the beta values from

the incremental GLM performed by TBV. The "map" index ranges from 0 to one less than the
number of contrasts specified in the TBV settings file (implicitly or via a specified contrast
".ctr" file); the number of contrasts can be retrieved using the "tGetNrOfContrasts" query. For
details, see the "Export Volume Data" example client.

Send: tGetContrastMaps
Receive: float [tGetNrOfContrasts*dim_x*dim_y*dim_z] ContrastMaps
Provides the full stack of contrast maps that is also used internally in TBV. Individual entries
are 4-byte float values. The data is organized as a flat array; in order to obtain the t value of a
specific contrast map index for a voxel with specific coordinates, use the term
"map_i*dim_xyz + z_coord*dim_xy + y_coord*dim_x + x_coord". The "map_i" index ranges
from 0 to one less than the number of contrasts specified in the TBV settings file (implicitly or
via a specified contrast ".ctr" file); the number of contrasts can be retrieved using the
"tGetNrOfContrasts" query. For details, see the provided "Export Volume Data" client.

SVM Access Functions

Since version 3.2 TBV provides access to classification output values calculated during real-
time SVM classification. The tGetCurrentClassifierOutput() function provides both a single in-
tegral value informing which class is predicted at the current time point as well as a detailed
vector of float values that can be used for custom classifier-based neurofeedback. The latter
information is returned in a vector since the number of values depend on the number of clas-
ses used for classification (see below). It is, thus, important to call the tGetNumber-
OfClasses() function to ensure that the right number of values is used to prepare an array
with sufficient size for retrieving the output values.

Send: tGetNumberOfClasses
Receive: int n_classes
Provides the number of classes for which values are provided. In case that the real-time SVM
classifier is not used, this function returns -3; in case that the real-time SVM classifier dialog is
open but the classifier is not producing incremental output, this function returns -2; if the
classifier is working but no output has been generated yet, this function returns 0. You only
should use the tGetCurrentClassifierOutput() function (see below) if this function returns a
positive value. Based on the returned (positive) value (assigned to e.g. variable n_classes),
the size of the array needed for the tGetCurrentClassifierOutput() function can be calculated
as the number of pair comparisons n_pairs:

n_pairs = n_classes * (n_classes - 1) / 2

Send: tGetCurrentClassifierOutput
Receive: float [n_pairs] ClassifierOutput
Provides results during real-time SVM classification for the current time point. The function
returns an integral value indicating which class is predicted, i.e. which class label has been
assigned to the current brain activity pattern. Note that the returned value is 1-based, i.e. if
the first class is predicted, value 1 is returned, if the second class is predicted, value 2 is
returned and so on. In addition to returning the predicted class, the function also fills a
provided float array with detailed classification values. Since the SVM
procedure internally finds the predicted class ("winner") by comparing the results obtained for
all possible unique pairs of classes, the array needs to be large enough to receive all pairwise
classification results (for calculation, see above). In case of a two-class problem, the array will
contain only one entry for the pair "1 against 2" or "1-2". For multi-class (> 2) problems, the
order of pairs will be starting with all pairs containing class 1 on the left side, then all
remaining pairs that have class 2 on the left side and so on. For a 3-class problem, the order
would be "1-2", "1-3", "2-3" and for a 4-class problem, the order would be "1-2", "1-3", "1-4",
"2-3", "2-4" and "3-4". A positive value for a pair indicates that the class on the left side has
"won" whereas a negative value indicates that the class on the right side has "won" the
respective pairwise comparison; the size of the value(s) may be used to calculate a
continuous value as a feedback signal.

http://download.brainvoyager.com/tbv/TBVUsersGuide/MVPA/RealTimeSVMClassification.html
http://download.brainvoyager.com/tbv/TBVUsersGuide/MVPA/RealTimeSVMClassification.html

As with the tGetNumberOfClasses() function, this function returns value -3 in case that the
real-time SVM classifier is not open and -2 in case that the real-time SVM classifier dialog is
open but the classifier is not producing incremental output. The function returns value -1 if the
SVM dialog is used but no output data is available for the current time point. Only access the
provided output_array if the returned value of the function is a positive number. Use the
tGetNumberOfClasses() function to retrieve the number of classes from which you can calcu-
late the number of pairs (see above) to determine the necessary size of the array used to re-
ceive the pairwise classification values. Consult the SVM Plugin sample code for an example
how to use the SVM access functions.

Functional Connectivity Functions

The plugin provides basic functional connectivity measure like the Pearson correlation or par-
tial correlation. These measures are based on the selected ROI’s and calculated for the cur-
rent and previous points in time and a specified window for the correlation. The correlation re-
sults stored in the float PCorrelation[ncon] array can be accessed as shown in the example
below:

The total number of correlations (ncon) can be calculated using the equation below.

int ncon=(n_rois*(n_rois-1))/2; // total number of correlations (edges)

Send: tGetPearsonCorrelation, int windowSize
Receive: float PearsonCorrelation[ncon]
Provides the calculated Pearson Correlation results of the current point in time for all
combinations of selected ROI’s. At least two ROI’s must be selected to calculate a correlation.

Send: tGetPearsonCorrelationAtTimePoint, int windowSize, int timePoint
Receive: float PearsonCorrelation[ncon]
Provides the calculated Pearson Correlation results of the point in time defined by the
timePoint (0-based) parameter for all combinations of selected ROI’s. At least two ROI’s must
be selected to calculate a correlation.

Send: tGetPartialCorrelation, int windowSize
Receive: float PartialCorrelation[ncon]
Provides the calculated partial correlation results of the current point in time for all
combinations of selected ROI’s. At least two ROI’s must be selected to calculate a correlation.

Send: tGetPartialCorrelationAtTimePoint, int windowSize, int timePoint
Receive: float PartialCorrelation[ncon]
Provides the calculated partial correlation results of the point in time defined by the timePoint
(0-based) parameter for all combinations of selected ROI’s. At least two ROI’s must be
selected to calculate a correlation.

int n_rois = tGetNrOfROIs();
int ncon = 0;
for(int i=1; i<n_rois; i++)
 for(int j=i+1; j<=n_rois; j++)

{
printf(“Correlation: ROI %i and ROI %i: %f“,i,j,PCorrelation[ncon]);
ncon++;

}

