
addendum for
nifti converter plugins

Hester Breman and Rainer Goebel

Maastricht, 2013



1 Spatial transformations in BrainVoyager

Rainer Goebel

1.1 Introduction

This technical document aims to provide detailed knowledge about spatial trans-
formations in general and how they are implemented in BrainVoyager. The doc-
ument focuses on the axes systems used in BrainVoyager and the assumed order
of axes rotations. In addition, it is described how rotation, translation and scaling
transformations are properly combined to create a 4x4 affine transformation matrix
as well as how such a matrix is properly decomposed into elementary transforma-
tions. The presented information is aimed towards advanced users who want to a)
simply understand these issues better or b) want to use transformation results from
other software in BrainVoyager or c) want to use transformation results produced
by BrainVoyager for other (custom) software.

It is a necessity that successive rotations about coordinate axes are treated con-
sistently in all volume- and surface-level coordinate transformation routines of
BrainVoyager. This is particularly important since successive axis rotations (in con-
trast to successive translations) do not commute, in that the composed transforma-
tion depends on the order in which individual rotations are applied. BrainVoyager
saves spatial transformations in a .TRF file, which contains, among other param-
eters, three values for rotations around the three coordinate axes. The order of
applying these angles must be consistent across different modules of the program.
It is, for example, possible to load a TRF file within the surface module in order
to apply the same transformation on a surface which had been previously applied
to a 3D VMR data set, or vice versa. Besides ensuring a consistent explicit speci-
fication of rotation angles across modules, all automatic rigid body coregistration
routines (3D motion correction, 3D-3D coregistration etc.) also have to result in
rotation angles, which are consistent with the implied order of axes rotations.

1.2 BrainVoyager’s axes conventions

BrainVoyager uses several different coordinate systems: the internal axes, the stan-
dard Dicom and Talairach axes and the OpenGL axes. To the user, normally only
the Dicom/Talairach axes system is presented. The internal axes system of Brain-
Voyager was defined initially for sagittal 3D volumes. The dimensions of the sagit-
tal images defined the X and Y axes with values ranging from 0 to 255 (X: anterior
to posterior, Y: superior to inferior) and the dimension across the slices defined the
Z axis (right-to-left) with values from 0 to 255 or less. This original decision (which
was at the end of the year 1995) is still the basis of the internal axes system, which
is depicted in figure ??.

To the user, the axes are presented according to the Talairach/Dicom naming
standard, i.e. the X axis in Talairach space corresponds to the Z axis in BVs internal
definition, the Y axis in Talairach space corresponds to the X axis in BVs internal
definition, and the Z axis in Talairach space corresponds to the Y axis in BVs interal
definition. Note that so far, this only changes the labeling of the axes, the values are
still from 0 to 255 along these relabeled axes in the original direction. Since these
relabeled axes are still internal definitions, they are shown to the user as “system
coordinates”, for example in the System coords field of the 3D Volume Tools dialog
(see below). In the following these relabeled axes will be called XSY S , YSY S and
ZSY S (SYS for “System”). The original (internal) axes are referred to as XBV , YBV

and ZBV (BV for “BrainVoyager internal”).

1



Figure 1: The BrainVoyager internal coordinate system

2



Besides the internal (BV) and system (SYS) coordinates, BrainVoyager also sup-
ports “real” Talairach coordinates, if appropriate. In the Talairach coordinate sys-
tem, the origin and axes values are defined with respect to landmarks of the brain.
Most importantly, the origin of the coordinate system is specified to be the anterior
commissure (AC) of the brain. Together with the posterior commissure (PC) and
additional landmarks specifying the border of the brain, the values along the X, Y,
and Z axis are defined. These Talairach coordinates are shown in the Talairach co-
ords field (see figure above). To enable Talairach coordinates, the Use Tal ref points
option has to be checked in the Talairach tab of the 3D Volume Tools dialog. The
figure below shows that the directions of the Talairach axes are oppositely defined
as compared to the internal/system axes (compare 0 to 255 with− to + directions).
The Talairach axes will be referred to as XTAL, YTAL and ZTAL. In BrainVoyager,
a brain is transformed into Talairach space in two steps, 1) ACPC transformation
and 2) Talairach scaling based on the proportional grid system. The first step is
a normal rigid body transformation (represented with a standard TRF file) while
the latter requires a special step based on a “TAL” file. A TAL file contains x,y,z
specifications of the AC and PC points and the cerebrum borders defined on the
ACPC brain. The landmarks are used for Talairach piecewise scaling of the ACPC
brain according to the proportional grid (Talairach & Tournaux, 1988) resulting in
a normalized brain.

Figure 2: The Talairach coordinate system

Note that the definitions of the system coordinates assume that the brain is in
BrainVoyagers “standard” orientation, i.e. that 3D data is represented as a series
of sagittal planes. If this is not the case for a raw data set, the program provides

3



the “To SAG” function to exchange the axes accordingly. BrainVoyager QX tries
to perform this step automatically based on header information and an analysis
of the symmetry properties of the data set. BrainVoyagers standard orientation
also assumes that the data set is in radiological convention (“Left-Is-Right”). This
is normally the case when reading native scanner data (manufacturers DICOM or
proprietary file formats such as Siemens IMA (Numaris versions prior to 4) or GE
“I” or GE “MR” files). If you are sure that your data is not in radiological but
in neurological convention (Left-Is-Left), you have to specify this in the Transform
to Standard SAG dialog. Data in neurological convention may be encountered if
you read data not directly from the scanner but from files exported by another
program.

The surface module visualizes reconstructed meshes and optionally displays
two coordinate frames, the OpenGL and the Talairach coordinate system. The
OpenGL coordinate axes (see figure below) are shown in the lower left corner and
correspond directly to the system coordinates (XOGL = XBV etc.). The OpenGL
axes are identified with letters as well as with a color code denoting the X axis with
red, the Y axis with green and the Z axis with blue. In addition to the OpenGL axes,
the Talairach coordinate system is also shown (see figure below). The axes can be
identified by color, i.e. the XTAL axis is drawn in red, the YTAL axis in green and
the ZTAL axis in blue. If enabled, the Talairach axes are shown always in the same
way even if a displayed mesh is not normalized into Talairach space. The mesh
shown in figure ?? is drawn 1-to-1 from voxel coordinates of the corresponding
3D (VMR) data set. Since the original VMR data sets are normally in radiological
convention, the mesh is shown in a left-right mirrored way.

As default, the surface module does not display the meshes as shown above but
attempts always to display them in its natural space: The program tries to assure
that the seen left side of a mesh always corresponds to the true left side of the
data set independent of neurological or radiological convention. To accomplish
this, a general flag Flip L / R based on Doc setting is defined, which flips
the values of the left-right coordinate axis in case that the data set is in radiological
convention. This flag can be found in the Global Options dialog, which can be
invoked by clicking the File → Global options menu item (see figures above and
below). This flag is checked as default and it should be always turned on to ensure
correct display of a mesh as shown in the figure below.

4



Figure 3: The OpenGL coordinate system

5



1.3 3D affine transformation matrices

Any combination of translation, rotations, scalings/reflections and shears can be
combined in a single 4 by 4 affine transformation matrix:

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

0 0 0 1

 (1)

The 4 by 4 matrix M corresponds to a affine transformation T() that transforms
point v to point u. In other words, the transformation of point u is found by mul-
tiplying v by M :

u =Mv (2)

The 4 by 4 transformation matrix uses homogeneous coordinates, which allow
to distinguish between points and vectors. Vectors have a direction and magnitude
whereas points are at certain coordinates with respect to the origin and the three
base vectors i, j and k. Points and vectors are both represented as mathematical
column vectors (column-matrix representation scheme, see note below) in homo-
geneous coordinates with the difference that points have a 1 in the fourth position
whereas vectors have a zero at this position. The transformation of the point v to
point u is thus written as: 

x′

y′

z′

0

 =M


x
y
z
0

 (3)

We now consider the nature of elementary 3D transformations individually and
then compose them into general affine transformations. Note that for an affine
transformation matrix, the final row of the matrix is always 0001 and we have to
understand the role of the elements in the upper 3 by 4 matrix.

1.3.1 Translation

For a pure translation, the matrix M has the simple form:
1 0 0 M14

0 1 0 M24

0 0 1 M34

0 0 0 1

 (4)

Applying this matrix to point v reveals that u =Mv is simply a shift in v by the
vector t = (tx = m14, ty = m24, tz = m34).

M =


1 0 0 x+ tx
0 1 0 y + ty
0 0 1 z + tz
0 0 0 1

 (5)

1.3.2 Scaling

A scaling operation along the three axes is represented by the following matrix:

6




m11 0 0 0
0 m22 0 0
0 0 m33 0
0 0 0 1

 (6)

Applying this matrix to point v results in (with sx = m11, sy = m22, sz = m33):

M =


x′

y′

z′

0

 =


m11 0 0 0
0 m22 0 0
0 0 m33 0
0 0 0 1

 =


x vx
y vy
z vz
0 0

 (7)

1.3.3 Shearing

Shearing operations belong to affine transformations and are achieved by non-
zero off-diagonal elements in the upper 3 by 3 submatrix. Shears are, however, not
used in BrainVoyagers standard spatial transformation, which corresponds to pure
rigid body transformations (rotations and translations) plus scaling for matching
different voxel sizes between data sets.

1.3.4 Rotations

Rotations represent the last elementary 3D transformation, which are the most im-
portant ones in the present context. It is common to specify arbitrary rotations
with a sequence of simpler ones each along one of three coordinate axes. In each
case, the rotation is through an angle, about the given axis. The following three
matrices Rx, Ry and Rz and represent transformations that rotate points through
the angle b in radians about the coordinate origin:

Rx(b) =


1 0 0 0
0 cos(b) −sin(b) 0
0 sin(b) cos(b) 0
0 0 0 1

 (8)

Ry(b) =


cos(b) 0 sin(b) 0

0 1 0 0
sin(b) 0 cos(b) 0

0 0 0 1

 (9)

Rz(b)


cos(b) −sin(b) 0
sin(b) cos(b) 0 0

0 0 1 0
0 0 0 1

 (10)

It must be further defined whether positive angles perform a clockwise (CW)
or counterclockwise (CCW) rotation around an axis with respect to a specification
of the orientation of the axis. In BrainVoyager QX, positive rotation angles cause
a counterclockwise rotation about an axis as one looks inward from a point on
the positive axis toward the origin. This is commonly the case for right-handed
coordinate systems as used in BrainVoyager.

1.4 Composing 3D affine transformations

An important property of affine transformations is that they can be composed,
and the result is another 3D affine transformation. A single matrix an be set up for

7



any sequence of transformations as a composite transformation matrix. Forming
products of transformation matrices is often referred to as a concatenation, or com-
position of matrices. For column-matrix representation of coordinate positions,
we form composite transformations by multiplying matrices in order from right
to left. That is, each successive transformation matrix premultiplies the product
of the preceding transformation matrices. The matrix that represents the overall
transformation is the product of the individual matrices M1 and M2 that perform
the two transformations, with M2 premultiplying M1:

M =M2M1 (11)

Any number of affine transformations can be composed in this way, and a sin-
gle matrix results that represents the overall transformation. This composite ma-
trix can then be applied to any point (column vector) as usual, i.e. u =Mv.

NOTE 1 Matrix multiplication is associative. For any three matrices,A,B, andC,
the matrix product ABC can be performed by first multiplying A and B or by first
multiplying B and C : ABC = (AB)C = A(BC). Therefore we can evaluate ma-
trix products using either a left-to-right or a right-to-left associative grouping. The
important point is that matrix multiplication is not commutative in general: The
matrix product AB (“A premultiplies B”) is generally not the equal to BA (“B pre-
multiplies A”). This means that if a sequence of translations, rotations and scalings
is applied, the order in which the elementary transformation matrices appear is
critical to determine the overall transformation. Only for some special cases, such
as a sequence of transformations all of the same kind (i.e. two translations or two
rotations around the same axis), the multiplications of transformation matrices is
commutative.

NOTE 2 The “right-to-left” order of transformation matrices holds for column-
matrix representations as used in this text. In this representation, points such as
u and v are represented as column vectors. Another convention being used in the
literature is row-matrix representation in which points are represented as row vec-
tors. A conversion between these conventions is easy by exploiting a property of
matrix transposition: The transposition of a matrix product is equivalent to the
product of the transposition of each matrix, with the order of multiplication re-
versed: (AB)T = BTAT . Thus, the transformation of vector v in columnar-matrix
representation u =M2M1v equals u = vTMT

1 M
T
2 in row-matrix representation.

1.5 The order of rotations in BrainVoyager

Since translations commute, the order of applying displacements along the three
axes does not matter. The order of rotations about the three coordinate axes, how-
ever, is critical since rotations are not commutative. The default order of rotations
in BrainVoyager is:

1. Rotation around YSY S axis (XBV axis)

2. Rotation around ZSY S axis (YBV axis)

3. Rotation around XSY S axis (ZBV axis)

If three non-zero angles are supplied, BrainVoyager performs first the rotation
about the YSY S axis (XBV axis), then about the ZSY S axis (YBV ) and finally about
the XSY S axis (ZBV ). This order was defined in a “natural order” (XBV , YBV ,

8



ZBV ) with respect to the internal axes definition, but appears arbitrary with re-
spect to the system coordinates. In BrainVoyager QX and BrainVoyager 5.x, the
order of axes rotation can now be specified in the new TRF file format (see below).
Because BrainVoyager was developed initially in the context of data from Siemens
scanners, the rotation about the coordinate axes does also appear in Siemens ter-
minology in the user interface, especially in the Angles field of the Reslicing tab of
the 3D Volume Tools dialog (see red rectangle in the figure below).

Figure 4: Rotations in BrainVoyager 2000

The Tra→ Cor angle corresponds to rotation about the X axis, the Tra→ Sag
angle corresponds to rotation about the Y axis, and the Sag → Cor’ angle corre-
sponds to rotation about the Z axis. In BrainVoyager QX, this Siemens terminology
is no longer used and is replaced by standard transformation labels (see figure be-
low). The rotation axes are now denoted as “x”, “y”, “z”, corresponding to the
XSY S (ZBV ), YSY S (XBV ) and ZSY S (YBV ) axes:

Figure 5: Rotations in BrainVoyager QX

The scaling parameter can be specified now either as Field-Of-View units (mil-
limeter) or as standard scaling parameters. A FOV value of 256 corresponds to a
scale value of “1.0”.
For a complete specification of a rotation, we must specify a rotation angle and
the position of the rotation point (or pivot point) about which the data set is to be
rotated. The default coordinates for the rotation point is the center of the 3D data
set, i.e. D/2 with D equal to the number of voxels in the respective dimension.
In a 256 by 256 by 256 data set, the rotation point would be thus 128, 128, 128.
If translation parameters are specified, the rotation point changes accordingly be-
cause the translation is performed prior to the rotation. In BrainVoyager, the trans-
lation/rotation point is defined as the coordinates of the current position of the red
cross. In BrainVoyager QX, the position of the red cross and the x, y, z translation

9



values are separated (see Translation fields in figure ??). This separation of the
translation parameters from the position of the red cross in BrainVoyager QX has
the advantage that a spatial transformation can be specified while it is still possible
to “browse” the data set.

Note. The default rotation point is not the exact center of the data set, which
would be for the x axis: XC = (DX−1.0)/2.0. With a dimension of 256 voxels, the
center would be XC = 127.5. Since this would, however, put the rotation point at
a non-integral (non-visible, intermediate) point, the D/2 definition is used for the
default rotation point. For scaling operations, however, the default fixed point (the
point which remains unchanged) is the true center of the data set, (D − 1.0)/2.0.
Scaling is used to match the voxel resolution of different data sets, i.e. during
FMR-VMR coregistration.

1.5.1 Decomposition of a rotation matrix into Euler angles

As described above, a complex affine transformation can be constructed by com-
posing a number of elementary ones. We can also ask the opposite question and
ask, what elementary operations “reside in” a given affine transformation matrix?
Unfortunately, this problem has not a unique solution since a matrix M may be
factored into a product of elementary matrices in various ways. There are, for
example, many ways to combine basic rotations to achieve the same composite
rotation. In the following, we assume that we have a matrix representing only
translation, rotation and scaling transformations.

The three translation values are easy to extract, they are simply the three upper
values of the fourth column
Tx = m14

Ty = m24

Tz = m34

The scaling factors are then extracted as:
Finally the rotations are extracted as follows:
Ry = asin((−row[0].z)
if (cos(y)! = 0) then
Rx = atan2(row[1].z, row[2].z)
Rz = atan2(row[0].y, row[0].x)

else
Rx = atan2((row[1].x, row[1].y)
Rz = 0

end if

1.6 The TRF file format for spatial transformations

Spatial transformations are saved in “TRF” files in BrainVoyager. These plain text
files do not contain a 4x4 matrix but save translation, rotation and scale values
separately for each axis. This choice has been made solely to allow for easy read-
ability. If a TRF file is applied, a respective 4x4 matrix is internally constructed
from the individual values. Transformation matrices from multiple TRF files are
also internally multiplied as detailed above. This happens, for example, during
VTC creation combining two TRF files, one for FMR-VMR and one for VMR-VMR
(ACPC) transformation. BrainVoyager QX will also support the explicit combina-
tion of multiple TRF files as well as the composition and decomposition of homo-
geneous 4x4 matrices.
Version 3 is the latest version of this file format introduced with BrainVoyager QX

10



and also supported in BrainVoyager 5.x. The new format allows to explicitly spec-
ify the order of rotation while the old format supported only the implicit order:
YSY S , ZSY S , XSY S . A typical TRF file used to look like this:

FileVersion: 3

xTranslation: 0
yTranslation: 8
zTranslation: 14

xRotation: -14
yRotation: 1
zRotation: -1

xScaleAsFoV: 256
yScaleAsFoV: 256
zScaleAsFoV: 256

OrderOfRotations: XYZ

TransformationType: 2
CoordinateSystem: 1

while in the newer BrainVoyager QX versions the parameters are provided in
the form of a transformation matrix in the TRF file:

FileVersion: 5

DataFormat: Matrix

0.0000010660081671 0.9786220788955688 -0.2056666463613510 4.3583703041076660
-0.0019511014688760 0.2056662589311600 0.9786202311515808 -9.4430999755859375
0.9999980926513672 0.0004002332862001 0.0019096103496850 1.4527800083160400
0.0000000000000000 0.0000000000000000 0.0000000000000000 1.0000000000000000

TransformationType: 1
CoordinateSystem: 1

NSlicesFMRVMR: 20
SlThickFMRVMR: 3.5
SlGapFMRVMR: 0
CreateFMR3DMethod: 3
AlignmentStep: 1

ExtraVMRTransf: 0

SourceFile: "C:/Data//fmr/series-0005.fmr"
TargetFile: "C:/Data/vmr/series-0003.vmr"

The file shown below is an example of an initial alignment transformation file
(*_IA.trf), that registers a functional file (*.fmr) to an anatomical file (*.vmr).

11



1.7 Summary of coordinate systems

Summary of axes systems in BrainVoyager QX:

1. Internal coordinates. Origin at voxel (0, 0, 0).
XBV : anterior→ posterior
YBV : superior→ inferior
ZBV : right→ left

2. System coordinates. Origin, directions/values are defined the same as the
internal coordinate system but axes names follow Talairach standard:
XSY S : right→ left
YSY S : anterior→ posterior
ZSY S : superior→ left

3. Talairach coordinates. Axes names like in system coordinates but opposite
directions, origin in AC (128,128,128), values defined according to 8 land-
marks (AC, PC, LP, RP, SP, IP, AP, PP).
XTAL: left→ right
YTAL: posterior→ anterior
ZTAL: superior→ left

4. OpenGL coordinates. Like internal (but also shown as system coordinates
to the user, except small axes cross in left lower corner of OpenGL (surface)
window.

Rotations CCW when looking along positive (OpenGL) axis to origin IN OPENGL.
With respect to real Tal axes, the opposite holds. Rot X and Z change sign in VMR.

Fiber coordinates are supported as “BV” or “TAL”.

12



2 On positioning terminology

This section has been added for people with an interest to learn more about the po-
sitioning terminology in image processing and how positioning information is rep-
resented in the different coordinate systems of BrainVoyager, DICOM and NIfTI-1.
It is not necessary to read this section in order to be able to use the converter.
To indicate the position of an image in a coordinate system, one can use orientation
and position vectors. The orientation vectors indicate how much an image is rotated
with respect to its coordinate system, and the position vector indicates the location
of the image with respect to the origin.
The information provided in this section has been summarized via image ??.

Figure 6: Positioning terminology and depiction of the orientation and position
vectors

13



2.1 Orientation of the image

There are three orientation vectors (see left side of figure ??). The rotation of the
x-axis of the image with respect to the coordinate system is one vector. The second
vector is the rotation of the y-axis of the image with respect to the y-axis of the
coordinate system. The third vector is the rotation of the z-axis of the image with
respect to its coordinate system. The rotations are indicated in radians. These
vectors that indicate the orientation of the image can also be called direction vectors.
In BrainVoyager, these direction vectors can be found under the name “RowDir”
for the x-axis vector and “ColDir” for the vector that indicates the orientation of
the y-axis (see figure ??). The vector for the z-axis can be computed by taking the
cross product of the first two vectors. This results in a normal vector.

Figure 7: Orientation vectors in the FMR header

In DICOM, these orientation vectors can be found in the tag ImageOrientation-
Patient (0020, 0037). The first three values represent the vector for the x-axis; in
figure ?? these are the values [0.99756405, 0, -0.069756478]. The fourth, fifth and
sixth values indicate the vector for the orientation of the y-axis; in figure ?? these
values are [0, 1, -6.9388939e-018], values which can be rounded to [0, 1, 0].

Figure 8: Orientation vectors in the DICOM header tag (0020, 0037)

When taking the cross product, the vector for the z-axis can be computed. The
cross product of [0.99756405, 0, -0.069756478] and [0,1,0] turns out to be [0.0698, 0,
0.9976]. This is the vector that indicates the orientation of the z-axis of the image
and can be placed in the third column of the positioning matrix (see upper part of
figure ??).

2.2 Orientation: left- or righthandedness, improper rotations or
radiological vs. neurological convention

If the determinant of the transformation matrix is -1 (instead of 1) then the orien-
tation of the image will be reversed. This means that on some axis, the image is
reflected in a plane.
With Matlab it is easy to calculate the determinant (with the det() function?), for

14



BrainVoyager we will provide a JavaScript (*.js) to test this. However, in BrainVoy-
ager itself one can check the orientation according to the descriptions below. In the
header of a NIfTI image, this is also indicated (see description below).

The “handedness” of an image can be checked by running the “Obtain image
information” function, see chapter ??.
In the BrainVoyager anatomical data format, a header field RadiologicalConvention
is available, which indicates that the image is in right-handed position (see figure
??).

Figure 9: The handedness of a *.vmr file printed to the BrainVoyager QX Log tab

If necessary, change the handedness by flipping the X-axis. This can be per-
formed via the BrainVoyager QX function “Flip X-axis” on the “VMR Properties”
dialog (see figure ??).

Figure 10: Change the handedness of a *.vmr file by flipping the X-axis

In NIfTI-1 images, the information is stored in the “qfac” parameter, in pixdim[0].
If this parameter is -1, this indicates that an improper rotation will be applied, so
that the orientation will be reversed, whatever it originally was (see figure ??).

Figure 11: The handedness of a *.nii/*.hdr file printed to the BrainVoyager QX Log
tab

Applying reflections To change the orientation of an image, one could apply a
reflection to the volume (for 4D images, this transformation will be applied to each
single volume).

Reflect volume in a plane, x-axis:
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Sometimes this matrix can be applied to flip the left and right of a VMR image.

Reflect volume in a plane, y-axis:
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


15



Reflect volume in a plane, z-axis:
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


This is the matrix to change left-right for NIfTI images in NIfTI coordinate system.
(See http://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fieldspages/qsform.html.)

Any of the reflections can be combined with any of the rotations, or reflections
with reflections, by matrix multiplication.

16

http://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/qsform.html


2.3 Position of the image

There is one position vector (see right side of figure ??). This vector contains the
vector from the origin (0,0,0) to the first voxel of the image. In BrainVoyager, this
vector can be found with the name SliceCenter1X/Y/Z and SliceCenterNX/Y/Z
(see figure ??). In the DICOM header, this can be found in tag (0020, 0032). When
creating a project in BrainVoyager, this information is also depicted in the “Info”
tab (see figure ??).

Figure 12: Position vector in the FMR header

Figure 13: Position vector in the DICOM header (tag 0020, 0032) of functional data.
In the Siemens version of the DICOM format, all images of one volume are often
placed in one file (mosaic). The positioning information is now computed using
concatenated image matrices, as if the images of the volume were lying in one
plane. The plane is usually square, so an image volume of 36 slices would be
placed in a plane with 6x6 images.

17



2.4 Orientation and positioning information in a matrix

The positioning information in BrainVoyager anatomical (*vmr) and functional
(*.fmr) files and the positioning file (*.pos) can be placed in a positioning matrix
in the following way:

world2voxel =


RowDirx ColDirx normalx SliceCenterx
RowDiry ColDiry normaly SliceCentery
RowDirz ColDirz normalz SliceCenterz

0 0 0 1

 . (12)

This matrix represents the BrainVoyager world-to-voxel transformation, which
converts positions of voxels in the DICOM coordinate system (x, y, z) to BrainVoy-
ager voxel indices (i, j, k). To compute the coordinates of a voxel, multiply the
inverse of this “world-to-voxel” matrix with the voxel indices (i, j, k) of a point in
the image:

voxelposition = world2voxel−1 ∗ [i, j, k, 1]T (13)

This computation transforms the set of voxels back to a metric space (coordinate
system).

In NIfTI, the positioning matrix can be created from the qform and sform header
fields (see figure ??). Also in this case the first three columns indicate the orienta-
tion of the image, while the fourth column indicates the position with respect to
the origin (0,0,0).

Figure 14: Orientation and position vectors in the NIfTI-1 header

18



3 Notes on transformations

3.1 Introduction

This section has been added for people with an interest to learn more about the
transformations terminology in image processing and how transformation infor-
mation is represented in the different coordinate systems of BrainVoyager, DICOM
and NIfTI-1. It is not necessary to read this section in order to be able to use the
converter.

Coordinate changes for a 3-dimensional object in vector space can be classified
as global or local. When the coordinates of an object are changed, this can be rep-
resented in a matrix. In global transformations, the same matrix can be applied to
each voxel.
For a 3-dimensional brain image, a 4 × 4 matrix can be used for a global coordi-
nate change. This involves a coordinate change along all axes or some of the axes.
Changes can be translations (shifts to a certain direction), rotations, scaling (change
of size, sometimes referred to as zooms), shears (skewness towards one direction)
and perspective transformations (vanishing horizon in a single point) (see figure
??).

Figure 15: There are four types of actions in affine transformations

In local, or non-linear, coordinate changes, different transformations are ap-
plied to certain voxels. This is the case for the Talairach transformation in Brain-
Voyager, where different matrices are applied for different sub-volumes. This is
sometimes called ’piecewise affine’, since the matrix is still a 4× 4 matrix.
An example of an affine transformation is the initial alignment in BrainVoyager. In
this transformation, the position of the functional image (*.fmr) is transformed to
the position of the anatomical image (*.vmr). To achieve this, the inverse of the po-
sitioning matrix of the anatomical image is multiplied with the positioning matrix
of the functional image (see figure ??).

The resulting matrix is stored in a transformation file (*_IA.trf). In figure ??
is shown that the shift or translation of the image can be found in the fourth column
of the transformation matrix. The other parameters are shown in appendix ??.

19



Figure 16: Transformation from FMR to VMR (please note that the drawing of the
center on the FMR volume should be on the first volume only)

Figure 17: The translation vector can be found in the fourth column of a transfor-
mation matrix

20



3.2 Storage of transformation information

While the original position of the image is stored in the image in the cases of Brain-
Voyager image data (anatomical (*.vmr), functional (*.fmr), diffusion weighed (*.dmr)),
each transformation being applied to the image is also stored in some way.
The storage of transformations for volumetric data in BrainVoyager is summarized
in table ??. Please note that for the piecewise affine transformation to Talairach
space only the landmarks are saved.

type internal storage external storage
position (scanner) VMR Properties *.pos
rigid body transformation VMR Properties *.trf
affine transformation (IA, FA) VMR Properties *.trf
Talairach landmarks VMR Properties *.tal

Table 1: Storage of position and transformation information in BrainVoyager files

The storage for volumetric data in NIfTI is summarized in table ??.

type internal storage external storage
position qform n/a
rigid body transformation qform n/a
affine transformation sform n/a
Talairach transformation no n/a

Table 2: Storage of position and transformation information in NIfTI files

21



3.3 Differences in storage of transformations

There is a difference between how the transformations are stored in NIfTI-1 images
and how the transformations are stored in BrainVoyager image data.
In BrainVoyager image files, the original position of the image in a BrainVoyager
flavour of DICOM coordinates is preserved (see the figures ?? and ??). All subse-
quent transformations are also preserved (see figure ??). The current position of
the image has to be calculated by multiplying these transformations. The fact that
the original position in the scanner and the history of transformations is preserved
in BrainVoyager image data, provides the user with a high degree of flexibility and
a nice logging functionality.

Figure 18: Before the transformation: anisotropic voxel sizes in the VMR Properties

The image properties, for example voxel sizes, can be inspected via the ‘VMR
Properties’ of the BrainVoyager ‘File’ menu (see figure ??). As in shown in figure
??, transformations are also saved in the ‘VMR Properties’.

Figure 19: After the transformation: storage in the VMR Properties

The matrix in figure ?? makes clear that the transformation is applied to Brain-
Voyager internal coordinates, because the anisotropic voxel size being reported
in the VMR Properties is X, while in the matrix the size for Z is set to 0.5. This
indicates that the x-axis in BrainVoyager system coordinates is z-axis in the Brain-
Voyager internal coordinate system (see appendix ??).
In NIfTI images, the positioning information is always updated to the newest
transformation. Since there is only place for storing two transformations, in the
qform and sform fields, this might not make it possible to retrieve the native posi-
tion as the image was acquired.

22



Resulting transformations for VMR

In the paragraphs below, the effects of rotating over axes of a standard coordinate
system (Talairach, NIfTI) on the images in BrainVoyager are shown.

Rotating over x-axis of an image

In a VMR, the x-axis is the anterior-posterior (sagittal) axis. So the effect of rotating
over the x-axis on TAL-VMR is that the head rotates leftward (counter-clockwise
as seen from the back of the head) over the anterior-posterior (sagittal) axis (see
COR window in figure ??).

rotation over x-axis 0π: 0◦ 0.5π: 90◦ π: 180◦ 1.5π: 270◦ 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

  1 0 0
0 1 0
0 0 1

  1 0 0
0 0 −1
0 1 0

  1 0 0
0 −1 −0
0 0 −1

  1 0 0
0 0 1
0 −1 0


Table 3: Rotation matrices for rotation over x-axis

Figure 20: Effect of rotation matrices on x-axis of coordinate system on VMR image

23



Rotating over y-axis of an image

In a VMR, the y-axis is the inferior-superior (axial) axis. So the effect of rotating
over the y-axis on TAL-VMR is that the head rotates leftward (counter-clockwise as
seen from the top of the head) over superior-inferior (axial) axis (see TRA window
in figure ??).

rotation over y-axis 0π: 0◦ 0.5π: 90◦ π: 180◦ 1.5π: 270◦ cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

  1 0 0
0 1 0
0 0 1

  0 0 −1
0 1 0
1 0 0

  −1 0 0
0 1 0
0 0 −1

  0 0 1
0 1 0
−1 0 0


Table 4: Rotation matrices for rotation over y-axis

Figure 21: Effect of rotation matrices on y-axis of coordinate system on VMR image

Note: some use the following matrix for rotations over the y-axis [?]:
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

24



Rotating over z-axis of an image

In a VMR, the z-axis is the left-right (coronal) axis. So the effect of rotating over the
z-axis on TAL-VMR is that the rotates backward (clockwise as seen from the left
side of the head) over left-right axis (see SAG window in figure ??).

rotation over z-axis 0π: 0◦ 0.5π: 90◦ π: 180◦ 1.5π: 270◦ cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

  1 0 0
0 1 0
0 0 1

  0 −1 0
1 0 0
0 0 1

  −1 0 0
0 −1 0
0 0 1

  0 1 0
−1 0 0
0 0 1


Table 5: Rotation matrices for rotation over z-axis

Figure 22: Effect of rotation matrices on z-axis of coordinate system on VMR image

25


